TABLE OF CONTENT

Preface
Acknowledgements
Author biographies

SECTION I GREEN CHEMISTRY PRINCIPLES

Chapter 1 Green chemistry and engineering
1.1 Principles of green chemistry and engineering
1.2 Ways to improve sustainability
1.3 Green chemistry and nanomaterials
References

SECTION II NANOMATERIALS

Chapter 2 Nanomaterials: what are they and why do we want them?
2.1 Fundamentals of the nanoscale
2.2 Tangible and historical examples of nanomaterials
2.3 Special properties offered by the nanoscale
2.4 Applications
2.5 Nanomaterial biocompatibility and toxicity
2.6 Key lessons
References

Chapter 3 Characterisation of nanomaterials
3.1 Introduction
3.2 Microscopy
3.3 Spectroscopy applied to nanomaterials
3.4 Diffraction and scattering techniques
3.5 Porosimetry
3.6 Key lessons
References

Chapter 4 Conventional methods to prepare nanomaterials
4.1 Top-down and bottom-up methods
4.2 Top-down methods
4.3 Bottom-up methods
4.4 Nucleation and growth theory
4.5 Conventional bottom-up methods
4.6 Emerging bottom-up methods
4.7 Key lessons
References

SECTION III FROM BIOMINERALS TO GREEN NANOMATERIALS

Chapter 5 Green chemistry for nanomaterials
5.1 Sustainability of nanomaterials production
5.2 Reasons behind unsustainability
5.3 Evaluation of sustainability for selected methods
5.4 Adopting green chemistry for nanomaterials
5.5 Biological and biochemical terminology and methods
5.6 Key lessons
References
Chapter 6 Biomineralisation: how nature makes nanomaterials
6.1 Introduction
6.2 Properties and function of biomineral types
6.3 Mineral formation controlling strategies in biomineralisation
6.3.1 The universal biomineralisation process
6.4 Roles and types of organic biological components required for biomineralisation
6.5 Key lessons
References

Chapter 7 Bioinspired ‘green’ synthesis of nanomaterials
7.1 From biological to bioinspired synthesis
7.2 Mechanistic understanding
7.3 An illustration of exploiting the knowledge of nano–bio interactions
7.4 Additives as the mimics of biomineral forming biomolecules
7.5 Compartmentalisation, templating and patterning
7.6 Scalability of bioinspired syntheses
7.7 Key lessons
References

SECTION IV CASE STUDIES

Chapter 8 Case study 1: magnetite magnetic nanoparticles
8.1 Magnetite biomineralisation in magnetotactic bacteria
8.2 Magnetosome use in applications: advantages and drawbacks
8.3 Biomolecules and components controlling magnetosome formation
8.4 Biokleptic use of Mms proteins for magnetite synthesis in vitro
8.5 Understanding Mms proteins in vitro
8.6 Development and design of additives: emergence of bioinspired magnetite nanoparticle synthesis
8.7 Key lessons
References

Chapter 9 Case study 2: silica
9.1 Biosilica occurrence and formation
9.2 Biomolecules controlling biosilica formation
9.3 Learning from biological silica synthesis: in vitro investigation of bioextracts
9.4 Emergence of bioinspired synthesis using synthetic ‘additives’
9.5 Benefits of bioinspired synthesis
9.6 From lab to market
9.7 Key lessons
References